Clase 8 - Ángulos inscriptos en una circunferencia
Esperamos sus mails en educabri@oma.org.ar.
Los ángulos inscriptos en una circunferencia tienen muchas aplicaciones en geometría. En esta clase veremos qué es un ángulo inscipto en una circunferencia, sus propiedades y algunas de sus aplicaciones.
Parte 1 - Actividades
1-1 Ángulo inscripto
1-2 Ángulo central
1-3 Ángulo inscripto en una semicircunferencia
En este caso, decimos que el ángulo ABC esta inscripto en una semicircunferencia.
Problemas
1. Demostrar las propiedades enunciadas en
las actividades 1-1 y 1-2.
Sugerencia: observando los triángulos isósceles de la figura,
demostrar primero que ABC mide la mitad de AOC.
Deducir que ABC es constante.
Ahora podemos resolver con más generalidad los problema
enunciados en la clase 3:
2. ¿Qué propiedad deben cumplir los ángulos
de un cuadrilátero para que exista una circunferencia
circunscripta a él?
3. Sea ABC un triángulo rectángulo en A. Sea M el punto medio de BC. Probar que MA = MB = MC.
4. Sea S una circunferencia y P un punto exterior a ella. Construir las rectas tangentes a la circunferencia, que pasan por P.
Así terminamos la octava clase de EduCabri, el curso de Cabri por Internet para usuarios de Omanet. Esperamos que les haya gustado. La semana que viene, ofreceremos una nueva clase.
Mientras tanto, es el turno de ustedes. Queremos que sigan las actividades y hagan los problemas. Cuéntenos lo que consiguieron y pregunten lo que no les salió. Envíen sus preguntas, dudas, sugerencias, experiencias y propuestas. Nuestra dirección es educabri@oma.org.ar .
EduCabri OmaNet Clase 9 | Internet vía OmaNet www.oma.org.ar/omanet | omanet@oma.org.ar |
mensajes webmaster@oma.org.ar |