R A M A A M A R I L L A X X V I I
POLIGONOS ESTRELLADOS Y ANGULOS
Tomemos cinco puntos cualesquiera de una circunferencia y los nombra-
mos en orden sucesivo ABCDE. Si se une cada uno con el siguiente, o sea tra-
zando los segmentpos AB, BC, CD, DE, EA tendremos un pentagono convexo. Cal-
cular la suma de sus angulos interiores.
En cambio, si los unimos de la siguiente manera: AC, CE, EB, BD, DA
tendremos un pentagono estrellado. Si medimos con transportador cada uno de
los angulos correspondientes a cada vertice y se suman los valores obtenidos,
esta suma sera aproximadamente 180º. ¿Por que?
Si en vez de cinco puntos tomamos siete A,B,..., podemos construir dos
poligonos estrellados distintos.
Para construir el primer heptagono estrellado marcamos los segmentos
AC, CE, EG, GB, BD, DF, FA. Para el segundo lo hacemos con AD, DG, GC, CF, FB,
BE, EA.
Si como antes medimos con un transportador los angulos de los vertices
y se suman los valores obtenidos, se observa que en el primer heptagono el va-
lor es de aproximadamente 540º y en el segundo 180º. Pedir a los alumnos que
encuentren una explicacion.

