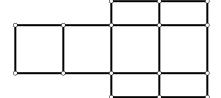
Sugerencias a los directores:

Los "Problemas Semanales" fueron pensados para que durante ese tiempo estén expuestos a la vista de los alumnos en el patio escolar; pasado ese tiempo serán reemplazados por los nuevos. Sería bueno que en ese período los directores averigüen quienes los resolvieron y los alienten, con el apoyo de sus profesores a encontrar la solución más original o la más corta o la que usa recursos más elementales o ingeniosos. Este es el camino que conduce a la Olimpíada de Matemática y disfrutar de una tarea creativa ampliamente valorada.

Difunda los Problemas!!!

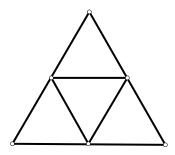
# Problemas Semanales de Graciela Ferrarini y Julia Seveso




Fecha: 13/04/2009

#### Primer Nivel

106. Marcela tiene muchas piezas de madera, las cuadradas son iguales entre sí y las rectangulares también son iguales entre sí.


Con dos piezas rectangulares se arma una figura igual a una pieza cuadrada.



Con 4 piezas rectangulares y 4 piezas cuadradas, Marcela armó esta figura de 168 cm de perímetro. ¿Cuál es el perímetro de cada una de las piezas?

### Segundo Nivel

206. Se tienen 3 colores de pintura: azul, rojo y verde. Se quiere pintar cada uno de los triángulos de un color, de modo que los triángulos que tienen lados comunes sean de distinto color. ¿De cuántas maneras puede hacerse?



#### Tercer Nivel

306. En la liquidación de temporada se ofrecen paquetes A y B.

Cada paquete  $\bf A$  contiene una remera y se ofrece a \$ 20.

Cada paquete B contiene dos remeras y se ofrece a \$ 35.

Por todos los paquetes se obtuvieron \$5600. En total se vendieron 312 remeras.

¿Cuántos paquetes de cada oferta se vendieron?

Sugerencias a los directores:

Los "Problemas Semanales" fueron pensados para que durante ese tiempo estén expuestos a la vista de los alumnos en el patio escolar; pasado ese tiempo serán reemplazados por los nuevos. Sería bueno que en ese período los directores averigüen quienes los resolvieron y los alienten, con el apoyo de sus profesores a encontrar la solución más original o la más corta o la que usa recursos más elementales o ingeniosos. Este es el camino que conduce a la Olimpíada de Matemática y disfrutar de una tarea creativa ampliamente valorada.

Difunda los Problemas!!!

# Problemas Semanales de Patricia Fauring y Flora Gutiérrez



Fecha: 13/04/2009

#### **Primer Nivel**

**106.** Sea ABC un triángulo con AB = 17, BC = 13 y AC = 23. Sea P el punto del lado BC tal que  $BP = \frac{BC}{3}$ . La bisectriz del ángulo  $\hat{B}$  corta al lado AC en D y la bisectriz del ángulo  $\hat{C}$  corta al lado AB en E. La recta perpendicular a E que pasa por E corta al lado E en E0 y la recta perpendicular a E1 que pasa por E2 corta al lado E3. Calcular E4 que pasa por E5 corta al lado E6 en E7.

#### Segundo Nivel

| <b>206.</b> Los números enteros positivos pares se escriben en una tabla de cinco |    | 2  | 4  | 6  | 8  |
|-----------------------------------------------------------------------------------|----|----|----|----|----|
| columnas, siguiendo el esquema de la figura. Determinar en qué fila,              | 16 | 14 | 12 | 10 |    |
| contando de arriba hacia abajo, y en qué columna, contando de izquierda a         |    | 18 | 20 | 22 | 24 |
| derecha, estará escrito el 2008.                                                  | 32 | 30 | 28 | 26 |    |
| ACLARACIÓN: La figura muestra las primeras 6 filas de la tabla, y el número       |    | 34 | 36 | 38 | 40 |
| 28, por ejemplo, está en la cuarta fila y en la tercera columna.                  | 48 | 46 | 44 | 42 |    |

#### **Tercer Nivel**

**306.** Sea ABCD un trapecio de bases AB y CD, y lados no paralelos BC y DA, con  $\widehat{BAD} = \widehat{ADC} = 90^{\circ}$ . La perpendicular a la diagonal AC trazada desde B corta a AC en E. Si AB = 125, AE = 35 y CE = 50, calcular el área del trapecio ABCD.

Estos problemas fueron enviados a través de la lista "material-oma". Si quieres recibirlos inscríbete a través de http://www.oma.org.ar/correo/

### Torneo de Computación y Matemática 2008 Problemas Semanales



Fecha: 13/04/2009

#### XII-106

Buscar dos números enteros positivos X ; Y que verifiquen  $X \cdot Y + 2 \cdot X + 3 \cdot Y = 1733$ .

#### XII-206

En un juego se elige un número entero positivo A de cinco cifras. El puntaje es igual a la suma de los dígitos de 2003·A. Por ejemplo si se toma un valor de A de 31415 se obtienen 34 puntos. ¿Cuál es el máximo puntaje que se puede obtener en este juego?

#### XII-306

Buscar un número ABCDE de 5 cifras, todas distintas de 0, tal que ABCDE sea múltiplo de 19, ABCD sea múltiplo de 29 y BCD sea múltiplo de 39.

#### Comentario C y M de la semana:

En algunos problemas de CyM, al reducir los números que aparecen se obtiene una versión más sencilla que sale a mano. Esta solución puede servir de pista para resolver el problema original con ayuda de la computadora. También funciona al revés: agregando uno o dos ceros a los números que aparecen en OMA o OMÑA a veces se obtiene un lindo problema para resolver con ayuda de la computadora. ¡Inténtenlo!