XXVI Olimpíada Matemática de la Cuenca del Pacífico

Marzo 2014

Duración: 4 horas Cada problema vale 7 puntos *Los problemas son confidenciales hasta su publicación en el sitio web oficial de APMO http://www.daryn.kz/apmo.Por favor, no publicar ni discutir los problemas en Internet hasta esa fecha.

No se puede usar calculadora.

Problema 1. Para un entero positivo m denotamos S(m) y P(m) a la suma y el producto, respectivamente, de los dígitos de m. Demostrar que para cada entero positivo n, existen enteros positivos $a_1, a_2, ..., a_n$ que satisfacen las siguientes condiciones: $S(a_1) < S(a_2) < ... < S(a_n)$ y $S(a_i) = P(a_{i+1})$ (i = 1, 2, ..., n). (Hacemos $a_{n+1} = a_1$.)

Problema 2. Sea $S = \{1, 2, ..., 2014\}$. Para cada subconjunto no vacío $T \subseteq S$, se elige uno de sus números como su *representante*. Hallar la cantidad de maneras de asignar representantes a todos los conjuntos no vacíos de S de modo que si un subconjunto $D \subseteq S$ es la unión disjunta de subconjuntos no vacíos $A, B, C \subseteq S$, entonces el representante de D es también el representante de al menos uno de los conjuntos A, B, C.

Problema 3. Hallar todos los enteros positivos n tales que para todos entero k existe un entero a para el cual $a^3 + a - k$ es divisible por n.

Problema 4. Sean n y b enteros positivos. Decimos que n es b-discriminante si existe un conjunto que consiste de n enteros positivos distintos menores que b que no tiene dos subconjuntos distintos U y V tales que la suma de todos los elementos de U sea igual a la suma de todos los elementos de V.

- (a) Demostrar que 8 es 100-discriminante.
- (b) Demostrar que 9 no es 100-discriminante.

Problema 5. Sean ω y Ω dos circunferencias que se cortan en dos puntos A y B. Sea M el punto medio del arco AB de la circunferencia ω (M está en el interior de Ω). Una cuerda MP de la circunferencia ω corta a Ω en Q (Q está en el interior de ω). Sea ℓ_P la recta tangente a ω en P, y sea ℓ_Q la recta tangente a Ω en Q. Demostrar que la circunferencia circunscrita al triángulo formado por las rectas ℓ_P , ℓ_Q y AB es tangente a Ω .